Solve Quadratics

Taking the Square Root of Both Sides

Common Core Georgia Performance Standards

MCC9-12.N.CN. 7
MCC9-12.A.CED.1ネ
MCC9-12.A.REI.4b

- A quadratic equation is an equation that can be written in the form $a x^{2}+b x+c=0$, where $a \neq 0$.
- Quadratic equations can have no real solutions, one real solution, or two real solutions. When a quadratic has no real solutions, it has two complex solutions.
- Quadratic equations that contain only a squared term and a constant can be solved by taking the square root of both sides. These equations can be written in the form $x^{2}=c$, where c is a constant.
- When we take the square root of both sides, we need to remember that a number and its opposite have the same square. Therefore, rather than simply taking the positive square root, we need to take the positive and negative square root. For $x^{2}=c$, we find that $x= \pm \sqrt{c}$.
- We can use a similar method to solve quadratic equations in the form $(a x+b)^{2}=c$.
- $\quad c$ tells us the number and type of solutions for the equation.

\boldsymbol{c}	Number and type of solutions
Negative	Two complex solutions
0	One real, rational solution
Positive and a perfect square	Two real, rational solutions
Positive and not a perfect square	Two real, irrational solutions

Guided Practice 5.2.1

Example 1

Solve $2 x^{2}-5=195$ for x.

Example 3

Solve $4(x+3)^{2}-10=-6$ for x.

Problem-Based Task 5.2.1: Time to Splash

Nina dives into a pool from a platform 3.75 feet above the water. Her height above the water in feet x seconds into the jump is given by the expression $-5(x-0.5)^{2}+5$. How long will it take Nina to hit the water?

Practice 5.2.1: Taking the Square Root of Both Sides

Solve each equation for x.

1. $x^{2}=81$
2. $x^{2}=-25$
3. $x^{2}-5=4$
4. $(x+3)^{2}=1$
5. $(x+3)^{2}+7=-2$
6. $4(x-10)^{2}=25$

Use what you know about square roots to complete problems 7-10.
7. When does a quadratic equation in the form $a x^{2}+b=c$ have only complex solutions?
8. The area of a square with sides of length s is given by s^{2}. The area of a square is 40 square centimeters. What is the length of one side of the square?
9. The area of a circle with radius r is given by πr^{2}. The area of a circle is 60 square millimeters. What is the radius of the circle?
10. The surface area of a cube with sides of length a is given by $6 a^{2}$. If the surface area of a cube is 200 square inches, what is the length of one side of the cube?

Closing: When solving a quadratic equation we are finding the zeros or \mathbf{x} intercepts of the graph. This would be the value at which the equation is ZERO. Find a quadratic equation that has zeros or solutions $x=4$ and -4 .

